Hilbert’s Tenth Problem over Function Fields of Positive Characteristic Not Containing the Algebraic Closure of a Finite Field

نویسندگان

  • KIRSTEN EISENTRÄGER
  • ALEXANDRA SHLAPENTOKH
چکیده

We prove that the existential theory of any function field K of characteristic p > 0 is undecidable in the language of rings provided that the constant field does not contain the algebraic closure of a finite field. We also extend the undecidability proof for function fields of higher transcendence degree to characteristic 2 and show that the first-order theory of any function field of positive characteristic is undecidable in the language of rings without parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert’s Tenth Problem for Algebraic Function Fields of Characteristic 2

Let K be an algebraic function field of characteristic 2 with constant field CK . Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over CK and x algebraic over C(u) and such that K = CK(u, x). Then Hilbert’s Tenth Problem over K is undecidable. Together with Shlapentokh’s result for ...

متن کامل

Hilbert’s Tenth Problem for Algebraic Function Fields over Infinite Fields of Constants of Positive Characteristic

Let K be an algebraic function field of characteristic p > 2. Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree p. Assume also that K contains a subfield K1, possibly equal to C, and elements u, x such that u is transcendental over K1, x is algebraic over C(u) and K = K1(u, x). Then the Diophantine problem of K is undecidable. Let G be an algebraic ...

متن کامل

Diophantine undecidability of function fields of characteristic greater than 2, finitely generated over fields algebraic over a finite field

Let F be a function field of characteristic p > 2, finitely generated over a field C algebraic over a finite field Cp and such that it has an extension of degree p. Then Hilbert’s Tenth Problem is not decidable over F .

متن کامل

Hilbert’s Tenth Problem for Function Fields of Varieties over Algebraically Closed Fields of Positive Characteristic

Let K be the function field of a variety of dimension ≥ 2 over an algebraically closed field of odd characteristic. Then Hilbert’s Tenth Problem for K is undecidable. This generalizes the result by Kim and Roush from 1992 that Hilbert’s Tenth Problem for the purely transcendental function field Fp(t1, t2) is undecidable.

متن کامل

ul 2 00 2 HILBERT ’ S TENTH PROBLEM FOR ALGEBRAIC FUNCTION FIELDS OF CHARACTERISTIC 2

Let K be an algebraic function field of characteristic 2 with constant field C K. Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over C K and x algebraic over C(u) and such that K = C K (u, x). Then Hilbert's Tenth Problem over K is undecidable. Together with Shlapentokh's result f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013